Introduction to Queueing Theory
First developed to analyze statistical behavior of phone switches.

Queueing Systems

used to model processes in which customers arrive, wait their turn for service, are serviced and then leave. Eg: supermarket checkouts stands, world series ticket booths, doctors waiting rooms etc..

Five components of a Queueing system:

1. Interarrival-time probability density function (pdf)

2. service-time pdf

3. Number of servers

4. queueing discipline

5. size of queue.

ASSUME an infinite number of customers (i.e. long queue does not reduce customer number). Bad assumption in a time-sharing model, with finite number of customers, if half wait for response, input rate will be reduced.

Interarrival-time pdf – e.g.  record elapsed time since previous arrival, list the histogram of interarrival times (i.e. 10 0.1 sec, 20 0.2 sec ...) This is a pdf character.

Service time  - how long in the server? i.e. one customer has a shopping cart full the other a box of cookies. Need a PDF to analyze this.

Number of servers - banks have multiserver queueing systems, food stores have a collection of independent single-server queues.

Queueing discipline - order of customer processing i.e. supermarkets are first-come-first served.  Hospital emergency rooms use sickest first.

Some queues have finite length: when full customers are rejected.

ASSUME infinite-buffer, single-server system with first-come, first-served queues.

A/B/m notation

A=interarrival-time pdf

B=service-time pdf

m=number of servers.

A,B are chosen from the set:

M=exponential pdf (M stands for Markov)

D= all customers have the same value (D is for deterministic)

G=general (i.e. arbitrary pdf)

M/M/1 is known, G/G/m is not.

For M/M/1 the probability of exactly n customers arriving during an interval of length t is given by the Poisson law:

(1)





This law appears in:

 physics (radio active decay (P[k alpha particles in t seconds] with 

 = avg # of prtcls per sec

operations research planning switchboard sizes P[k calls in t seconds] with 

=avg number of calls per sec

biology water pollution monitoring P[k coliform bacteria in 1000 CCs] 

=avg # of coliform bacteria per cc

Transportation planning size of highway tolls P[k autos in t minutes] 

=avg# of autos per minute

optics in designing an optical recvr P[k photons per sec over the surface of area A] 

=avg# of photons per second per unit area

Communications in designing a fiber optic xmit-rcvr link P[k photoelectrons generated at the rcvr in one second] with 

=avg # of photoelectrons per sec.



=rate parameter=event per unit interval (time distance volume...)

The Poisson law results from asymptotic behavior of the binomial law (in the limit as the prob[event]->0, # of trials -> infinity and the number of events is small compared with the number of trials)
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e.g. 
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we should get 100 custs in 10 minutes (max prob). In maple:
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To obtain numbers with a Poisson pdf, you can write a program:

total=length of sequence

lambda = avg arrival rate

exit x() = array holding numbers with Poisson pdf

local num= Poisson value

r9 = uniform random number

t9= while loop limit

k9 = loop index, pointer to x()

for k9=1 to total


num=0


r9=rnd


t9=exp(-lambda)



while r9 > t9




num = num + 1




r9 = r9 * rnd



wend


x(k9)=num

next k9

(returns a discrete Poisson pdf in x())

Prove: that Poisson arrivals generate an exponential interarrival pdf.
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This is the prob. of 0 arrivals for time t times the prob. of 1 arrival in t:
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subst into (1) 

  and you get:
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 and 


In the limit as 

, the exponential factor in 
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 approaches 1 so by subst.:
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 = 


and 

(2) 



with

 


We have made several assumptions:

1. exponential interarrival pdf.

2. exponential service times (i.e. long service times become less likely)

The M/M/1 queue in equilibrium




There are 4 people in the system (and this describes the state of the system). 

3 in the queue, 1 in the server. 

The amount of time the person in the server has already spent being served is independent of the probability of the remaining service time. M/M/1 queues are memoryless (a popular item with queueing theorists, and a feature unique to exponential pdfs).
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In a birth-death system once serviced a customer moves to the next state. This is like a non-deterministic finite-state machine. The following state-transition diagram is called a Markov chain model. Directed branches represent transitions between the states. Exponential pdf parameters appear on the branch label.

These are the states for a single-server queueing system.
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State 0 = system empty

State 1 = cust. in server

State 2 = cust in server, 1 cust in queue etc...

Prob. of a given state is invariant wrt time if system is in equilibrium. The prob. of k cust’s in system is constant.

This is like AC current entering a node and is called detailed balancing thus, the number leaving a node must equal the number entering:

3



3a



4



4a



by 3a

4b


=


since

5



then

6



where 

= traffic intensity < 1

since all prob. sum to one, 

6a 
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and since the sum of a geometric series is

7



subst 7 into 6a :

7a



and

7b


=prob server is empty

subst into(6)

8



let N=mean number of cust’s in the system

To compute the average (mean) value use:

8a 



subst (8) into (8a) to obtain 8b

8


 

8b



differentiate (7) wrt k

8c



multiply both sides of (8c) by 


8d 



9






as  approaches 1, N grows quickly.

T=mean interval between cust. arrival and departure, including service.




In 1961 D.C. Little gave us Little’s result:

10



For example:

A public bird bath has a mean arrival rate of 3 birds/min in Poisson distribution. 

Bath-time is exponentially distributed, the mean bath time being 10 sec/bird. 

Compute how long a bird waits in the Queue (on average).
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= mean arrival rate
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=mean service rate

So the mean service-time is 10 seconds/bird 

=(1/ service rate)
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sec for wait + service

The mean queueing time is the waiting time in the system minus the time being served, 20-10=10 seconds.

Tannenbaum says that the mean number of customers in the system for an M/G/1 queueing system is:

(11)
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 of the service time.

This is known as the Pollaczek-Khinchine equation.

Note: M/G/1 means that it is valid for any service-time distribution.

For identical service time means, the large standard deviation will give a longer service time.
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